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Shape and Medicinal Chemistry

In his philosophic musings “Meditations” the Emperor
Marcus Aurelius asks “This thing, what is it in itself, in its
own constitution? What is its substance and material? And
what its causal nature?”' The history of chemistry, and in
particular medicinal chemistry, is an elaboration of these three
questions as applied to molecules: “What is the essence of a
molecule? What is it made of? What will it do?”

In trying to answer these questions, and thereby describe
molecules, we create languages. Primo Levi, the great writer
and chemist, complained in 1984 that there were only three
accepted ways to describe a molecule and none of them were
very good: the ambiguous molecular formula, the nonlexical
chemical graph, and the (often obscure) chemical name.” Yet,
because these are the ways we describe a molecule’s “constitu-
tion”, these dominate our approaches to predicting what
a molecule will do. Even SMILES,? developed by David
Weininger shortly after Levi’s lament, and intended to be a
real lexicographic description, only facilitated methods that
rely on the counting of elements of composition, e.g., chemical
rules of thumb, classification algorithms, druglike filters (e.g.,
the ubiquitous rule of five*), 2D QSAR, or molecular finger-
prints. While we may have elaborated beyond the elemental to
include graph-related properties (e.g., aromaticity, hydropho-
bicity, hydrophilicity, hydrogen bond donors and acceptors,
and so forth), these are seldom fundamental and often just
opinions on how molecules behave.

To further our ability to predict, we have to consider other
“essential” aspects of a molecule, in particular its three-
dimensional form. It is a subject of continuing investigation
as to how best to capture this “essence”, and this Perspective
details the contribution of molecular shape. Shape is not the
only approach; for instance, the well-known concept of 3D
pharmacophores has proved very successful.” Yet pharmaco-
phores describe atoms or sets of atoms as points in space, and
molecules are more than that; they are volumes and surfaces.
Approaches that focus on shape, as described here, go beyond
pharmacophoric methods in both utility and generality. And
while some have tried to use pharmacophores to describe
shape,® such efforts have not been very successful; shape is
simply a different descriptive paradigm.

So what do we really mean by shape? There is a simple,
universal meaning to the concept as the coincidence of
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volumes (Figure 1) that can also be extended to surfaces.
Despite this precise and very general definition, there are
many less general and more limited interpretations. We have
avoided considering these approaches in order to present
a more cohesive perspective, although there are excellent
reviews on these various methods.” We do, however, include
an analysis of attempts to approximate shape. Such methods
are inevitably “lossy”; i.e., they trade information for the
expediency of computational simplicity and speed. Any
attempt to answer the first of Aurelius’ questions is always
going to be incomplete; as Kuhn points out, there are always
new levels of understanding in science.® Yet finding a good
and useful essence is hard work, and so we consider if these
approximate methods are worth the loss of verisimilitude.

Initially the motivation for shape in drug discovery was
virtual screening; if two molecules have a similar shape,
perhaps they have similar properties. Despite Quine’s adage
that “exploiting the similarity concept is a sign of immature
science”,’ shape similarity is now quite a mature approach.
Yet the truest measure of an idea is not only its usefulness as
originally conceived but also how its ambit expands over time,
something this article attempts to chronicle. In addition to
lead discovery, we have asked developers of theory and
practitioners of methods to describe the application of mole-
cular shape in areas as diverse as crystallographic refinement,
docking and pose prediction, clustering, library design, and
lead optimization. Finally, we ask what the new directions for
shape in molecular modeling might be. Does shape provide a
viable new language for chemistry, or is that still out of reach?
Clearly this is worth a meditation.

Shape and Virtual Screening

The term “virtual screening” is fairly new. A SciFinder
search suggests the first appearance of this phrase was in the
1990’s,'% but the idea has been around for a long time. The
concept of using 3D similarity (sometimes using shape alone,
sometimes using atom typing, i.e., assignment of chemical
character to an atom or group of atoms or the fields emanat-
ing from molecules) as a basis for virtual screening is integral
to a computational chemist’s tool chest. As Clark suggested,'”
companies that were pioneers in this area have many success
stories. Indeed, Merck Research Laboratories (MRL) has
been developing virtual screening methods for decades'! ™13
and has several published examples where 3D similarity has
been applied in virtual screening and projects have been
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Figure 1. Illustration of a fundamental definition of shape similar, derived from the alignment that achieves an optimal overlap of objects. The
mismatch volume between two objects is a true mathematical metric distance, i.e., obeys the triangle inequality that says the distance from
object A to object C cannot be greater than the distance from A to B plus B to C nor less than the difference between these distances. However,
the optimal overlap leads the more intuitive Shape Tanimoto (ST), i.e., the ratio of the overlap to the absolute difference of the sum of the
self-overlaps and optimal overlap. It has the useful character of ranging from 1.0 (perfect overlap) to 0.0 (no overlap).

Figure 2. Compound 1 (left-hand image) and superposition of
compound 1 (green) with probe ligand (white) using SQW."?

thereby advanced.'*'® Most of these early efforts helped
bridge the gap from a peptide-like lead to a drug-like lead.
MRULs first published application of virtual screening was
in the non-peptide fibrinogen receptor antagonist program.'*
Starting from the endogenous Arg-Gly-Asp motif, a virtual
screen of the corporate database identified many non-peptides
that mimicked this group. Some of these were tested, and one
turned out to be a 27 uM (ICsp) lead. In another example, a
query was constructed from key amino acids of somatotropin
release-inhibitor factor (SRIF) plus additional “sphere
points” that defined salient electrostatic and volume regions.
A virtual screen of Merck’s flexibase'” of over 1 million com-
pounds using this query identified compound 1 (Figure 2),
which was found to have measurable activity.'®'® This com-
pound was ranked 41 out of >1 million compounds by SQW
(SemiQuantitative reWrite).'*> SQW is the second generation
of a proprietary 3D similarity/superposition program written
in-house at MRL. The original program SQ (for Semi-
Quantitative) was written in the late 1990’s. SQ/SQW operates
on a rigid molecules represented as heavy atoms that have
been classified into seven physiochemical types (cation, anion,
etc.). First, a clique matching algorithm is used to generate
many orientations of a candidate molecule onto a target
molecule. Second, a Nelder—Mead simplex algorithm adjusts
the orientation of the candidate molecule to optimize the

score. An analogue of compound 1 was the first potent and
selective small molecule somatostatin receptor 2 (SST2) ago-
nist reported at the time. The superposition of compound 1
(green) with the probe ligand (white) is shown in Figure 2.
MRL was not the only group to develop shape algorithms
for the primary application in lead identification, but we did
develop one of the earliest 3D superposition methods, called
SEAL," which took into account charges and volumes. There
are numerous independent software vendors (ISVs) and aca-
demic groups that have subsequently published in this area,
and we refer you to the following references for an over-
view.'%!" In 2004 we undertook a large scale comparison of
purchasable shape-based methods for use in virtual screen-
ing.'? In retrospect, we did find, as suggested by others in
the literature, that there are many pitfalls and “gotchas”
connected with the whole enterprise of method comparison
that make it hard to arrive at robust conclusions. We refer
interested readers to a special Journal of Computer-Aided
Molecular Design issue “Evaluation of Computational Meth-
ods: Insights, Philosophies and Recommendations™' for
many suggestions on how to properly conduct an evaluation.
The most important conclusion from our study is that,
within the limits of retrospective screening, knowing the
structure of an active ligand is better than knowing the atomic
structure of its receptor. This is true if what one cares about is
how many actives are retrieved and does not, for instance,
need to find a plausible docking mode. We are not the first to
say this; our conclusions are in agreement with earlier findings
on this topic.?* It seems to be generally true regardless of
which database one screens®* or which ligand or protein
structure one uses for the virtual screen.?* As time went on we
realized, based on valid critiques of our study, that we needed
to change the way we compared methods, the most important
of which had to do with the set of targets we used: (1) we
sought to have enough targets to minimize the uncertainties
due to the composition of the target set and (2) we would have
to choose only those targets where the number of actives was
fairly large. Simulation studies in MRL by Truchon and
Bayly® also reinforced the need for more actives. We there-
fore developed a set of 47 small molecule targets such that the
number of diverse actives in the MDDR was >20. The
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Figure 3. Enrichment factors (EF) at 1% for ROCS and SQW results for over 47 unique targets. Enrichment here is the ratio of the number of
actives at a given percent of the database to the expected number of such.

majority of the targets have cocrystallized ligands in the
Protein Data Bank (PDB),?® but some are derived 3D geo-
metries using CORINA.

Given this new set, we carried out a number of studies>’
comparing various 2D and 3D similarity methods as virtual
screening engines. Since it is apropos for this venue, we will
focus on ROCS (rapid overlay of chemical structures) and
SQW, which are both 3D similarity methods. In our hands
3D similarity methods seem to embody the best combination
of finding the most actives in virtual screening and having
those actives be diverse.”” ROCS is considered a state of the
art 3D similarity method. ROCS searches for optimal shape
overlays, as illustrated in Figure 1. It uses atom-centered
Gaussians to accurately represent volumes because such
functions are much smoother than discrete “inside/outside”
representations, e.g., molecules as fused spheres. As a con-
sequence, the number of overlap maxima is much reduced,
enabling approximations to the global maxima to be found
quickly. It also includes the facility to match chemical types
by representing atoms or groups of atoms as Gaussians of a
given “type” or “color”, for instance, rings, hydrogen bond
donors and acceptors. It has a lot in common with SQW in
the core concepts (atoms typed as hydrogen-bond donor,
acceptor, etc.; atoms represented as Gaussian functions, i.e.,
a soft, extended function, rather than a one or zero function
corresponding to a hard sphere), but the detailed implemen-
tation is different. One interesting addition in ROCS is the
inclusion of a “ring” term, where molecular superpositions
get extra credit if ring centroids are superimposed, regardless
of the type of ring. Our findings are that while SQW and
ROCS do not perform the same on any given target, the
average performance over 47 targets is surprisingly similar
(Figure 3).

Despite the fact that 3D similarity methods perform very
well, by no means are we saying they are a panacea. We often
state in regard to virtual screening methods that “everything
works on something; nothing works on everything”.?® If one is
in the lead finding stage of a program, 3D similarity may be
the most straightforward method to obtain diverse leads.” '
However, if your protein target can adopt multiple conforma-
tions (because of inherent flexibility), one may be less success-
ful retrieving a novel, active ligand using 3D similarity
methods. This is the case for S-secretase (BACE), which is
implicated in Alzheimer’s disease. For instance, if you used the
hydroxyethylamine ligand from the PDB code 2B8L** as a
probe for virtual screening (which interacts directly with both
catalytic aspartic acids Asp”> and Asp®*® and occupies regions
P1, P2, P3, and P1’), it would be nearly impossible to identify
in the top rankings a spiropiperidine (PDB code 3FKT™)
which interacts with the catalytic aspartic acids via a water
molecule and does not occupy regions P2 or P3 at all.
Furthermore, the best ROCS superposition of these two
ligands (Figure 4a) does not even qualitatively overlay the
ligands in the way one observes crystallographically
(Figure 4b). Why is this? Clearly 3D similarity methods do
not take into account the influence of the receptor and, by
design, will maximize volume overlap between two molecules.
This is in contrast to how the BACE ligands are bound in their
cognate sites (Figure 4b). In the BACE example, they occupy
different spatial regions of the enzyme. This is clearly a failure
of the assumptions behind 3D similarity methods, and protein
flexibility obviously makes this issue more severe. That said,
one should not abandon the utility of 3D shape based
similarity in such cases; rather, such a virtual screen should
be complemented with additional computational methods
such as docking.
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Figure 4. (a) Highest ranked ROCS superposition by Combo score (sum of the ST and raw color overlap) of ligands from PDB codes 3FKT
(white) and 2B8L (green). (b) Aligned enzyme structures (3FKT and 2B8L) with cognate ligands. The key piperidine—water mediated
hydrogen-bonding interaction with the catalytic acids is depicted as a red sphere.

In contrast to the failure exemplified in the BACE example,
there are numerous examples where the shape of the ligand
coupled with electrostatics to capture the polarity of the atoms
has identified novel, noncongeneric hits via virtual scree-
ning."* 71731 Are the hits retrieved found for the “right
reason”? For instance, if overlaid in the active site of the
protein or enzyme, would the correct chemical features align
in the active site in contrast to the BACE example depicted in
Figure 4a? In the case where ROCS was used to find inhibitors
of ZipA-FtsZ,>' the authors subsequently crystallized one of
the hits in ZipA and determined that ROCS predicted the
binding mode. Induced fit, manifested as enzyme flexibility,
was not integral to this binding motif and demonstrated that
the hit retrieved in that study was found for the “right reason”.
That is, when overlaid in the active site of the protein, the
correct chemical features align in the active site.

The emergence of public data sets such as DUD allows us to
ask if there are trends in the proficiency of shape tools; for
instance, do they work worse with active compounds that are
flexible or better for active sites that are small? Preliminary
evidence is that shape is fairly robust with respect to opera-
tional parameters. However, some trends can be observed.
Figures 5 shows the performance of ROCS, measured by area
under the Receiver Operator Characteristic (ROC) curve (AUC),
over the cocrystal structures in DUD. Each symbol represents
a query molecule in DUD, with its own particular set of
decoys. We specifically asked the question how (A) heavy
atom count, (B) the ratio of ROCS’ so-called “color” atoms to
heavy atoms, and (C) intrinsic ligand affinity affect the
performance of this shaped-based method to retrieve active
compounds. A number of other properties, such as charge,
ligand flexibility, number of color atoms, and a measure of site
polarity, were also tested and found to have little or no
correlation with performance. The decreasing performance
with respect to number of non-hydrogen atoms in the query
seemed reasonable; i.e., perhaps the conformational space of
larger molecules was harder to search. On the other hand there
seems to be no correlation of AUC with the number of
rotatable bonds in the query. Investigation of the ratio of
color atoms to heavy atom count in the query suggests that
query molecules that do not have enough color points tend to
have poorer performance, which is consistent with observa-
tions that ROCS “shape” tends to be poorer than ROCS with

color. Finally, there does not seem to be any significant relation-
ship between the potency of the query on its particular target
with the ability of ROCS to select more actives with the same
activity. The results in Figure 5 are by no means final, as we have
not formulated a data set where each set of probe ligands are of
similar ligand affinity or molecular weight, etc.; however, a
study focused on understanding those physicochemical pro-
perties is warranted. We have merely scratched the surface in
exposing that some of these features may affect performance.

In conclusion, the application of 3D virtual screening
methods has resulted in the identification of many active
compounds in drug discovery programs. We and others have
repeatedly demonstrated that 3D similarity-based virtual
screening maintains enrichment in actives and increases the
diversity in the compounds discovered. As a consequence,
shape is integral to any drug discovery program. Finally,
shape is a necessary requirement to facilitate the identification
of both active and novel ligands in drug discovery, but it is not
ultimately sufficient in the entire life cycle of a program where
other factors, e.g., pharmacokinetic properties, may become
more important and where shape has yet to play a significant
role. In addition, there are clearly situations where shape is less
useful. For instance, flexibility of the target enzyme or recep-
tor can reduce the effectiveness of a 3D shape-based virtual
screen, i.e., if there is less shape “coherency” between active
molecules. In general practice, however, knowledge of merely
one active compound can often outweigh the presumed
advantages of an existing protein structure. Applications to
molecules of a more fragment-like nature, where shape dis-
crimination is subtler, are considered later in this Perspective
in the context of library design.

Lead Optimization

The synthesis of compounds necessary for a detailed search
of chemical space for lead optimization can make it much
more resource intensive than lead discovery. In order to justify
this cost, the yield, in terms of active compounds with
improved physical properties, must be significantly higher
than screening or virtual screening. This leaves chemists with a
difficult balancing act; in order to modify the properties of the
lead, they must change the molecule significantly. Yet to
maintain activity, they must be conservative. For many years,
chemists have been doing this through the knowledge of
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Figure 5. (a—c) Performance of ROCS over the DUD data set.
DUD consists of a set of 40 protein—ligand systems, 38 of which has
crystallographic coordinates. The data presented here are the results
from taking the crystallographic ligand as the ROCS query in a
virtual screening experiment against all other active ligands and the
standard DUD decoys for that system. Presented are the AUC
values, i.e., the area under the curve for each ROC curve, versus
three ligand properties, namely, number of non-hydrogen atoms
(a), ratio of the number of color points to this number (b), and the
ligand affinity (c). Note the number of color points is the number of
color Gaussians added to the shape optimization and depends on
the number of chemical features, e.g., donors, acceptors, etc.

bioisosteres and other intuitively semiconservative fragment
replacements. Shape-based fragment-similarity tools auto-
mate and extend this common practice. Rather than sampling
the thousands of fragments that might come into a chemist’s
mind, such tools can search millions of fragments and winnow
the list, so a modeler or chemist can assess the viability of just a
few compounds, knowing that all of the fragment replace-
ments have the same shape as the original fragment, balancing
the need for change and the need for stability. At the same
time, other physical properties, such as those that make up
Lipinski’s “rule of five”, can be easily calculated as part of the
lead optimization objective function. More so even than in

Nicholls et al.

lead discovery, shape can play an essential role in guiding
project goals.

Central to such approaches has been the deconstruction of
molecular databases using pseudoretrosynthesis.** The result-
ing fragment databases can then be used in bioisosteric de
novo design through comparison of parts of the active lead
with fragments abstracted from pharmacologically active
molecules. The advantages of experimental fragment-based
screening based on the lowering of molecular complexity have
been extensively discussed.***® Many parallels can be drawn
to this from the perspective of fragment-based alignment.
Fragments, being smaller, tend to be far more rigid in nature,
rendering active conformation elucidation less of a challenge.
Superposition is also dramatically simplified, since in addition
to fewer degrees of freedom the fragmentation points provide
strong bond alignment constraints. Further, users have the
ability to focus on portions of active ligands where structure—
activity relationships are more readily understood, again
maximizing the information content of the resulting screen.

This fragment replacement approach has been applied
using a variety of molecular similarity descriptors,®”*> with
the BROOD program pioneering the technique from the
perspective of shape-based template comparison.*! KIN**47
is a shape-based screening tool developed within Bristol-
Myers Squibb (BMS) and will be discussed here in some
detail. KIN’s molecular similarity calculations are made using
Gaussian-derived comparisons of electrostatic potential and
shape as developed within the Richards group.*’~* These
scoring functions have then been incorporated into the
DOCK docking program to exploit its flexible clique search
framework.’® For de novo bioisosteric replacements addi-
tional Gaussian constraints have been added to force super-
position of the linker bonds that map the fragment to its
parent molecule. In addition, exclusion Gaussians can be
integrated to reflect regions of protein bulk, derived either
explicitly from protein structure or implicitly from SAR. Each
element of the scoring function can be weighted differently,
and shape Gaussians can be “colored”, i.e., assigned chemical
character, to force the mapping together of critical binding
functionalities. Table 1 is provided to illustrate how the atom-
by-atom descriptions can end up looking in a KIN template
file.

The tight geometric constraints intrinsic to bioisosteric
clique searches allow for extremely rapid searches, ranging
from 10° to 10’ conformations per CPU hour depending on
query complexity. Some results of this approach are shown in
Figure 6, with three search examples using different facets of
KIN’s search capabilities, namely, carbamate, biphenyl, and
benzamidine replacement in factor VIIa serine protease (PDB
entry 2bz6). The result is a program able to provide a rapid
turnaround of scaffold hopping ideas, readily understood by
chemists, in the context of existing chemotypes and SAR. KIN
has been used extensively as a bioisostere replacement search
tool within BMS.

There remain many open questions as to whether shape can
contribute in other ways to lead optimization, for example, to
the calculation of observable trends within series, such as
activity. Typical approaches to these difficult problems involve
either first-principles physics approaches, scoring functions, or
QSAR methodology, none of which have proven generally
reliable. Given the importance of shape and electrostatics in
lead optimization and because of their role in protein—ligand
interaction, it seems reasonable to hope for advances beyond
the current methods of bioisosteric replacement.
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Table 1. Extract of the KIN Template File for Benzamidine Replacement (Figure 5¢)”

Atom Number/Name Type Charge/Weight
Coordinates Critical Region KIN atom type

2 0.0 mapping atom

2 €2 11.5122 39.0316 30.0079 C.ar 5 0.0 linker
2 0.0 mapping_atom
2 0.0 mapping_atom
2 0.0 mapping_atom
2 0.0 mapping atom
2 0.0 mapping_ atom

8 N1 15.4680 36.7800 28.1850 N.pl3 2 0.0 mapping_ atom

9 N2 13.7642 37.6086 26.8089 N.pl3 4 10.0 donor
1 0.0 null ligand
1 0.0 null ligand
1 0.0 null ligand
1 0.0 null_ ligand
1 0.0 null_ligand
1 0.0 null_ligand
1 0.0 null ligand

17 8i1 9.¢ Si 3 0.0 r group
1 0.0 null ligand
1 0.0 null_ ligand
1 0.0 null ligand
1 0.0 null ligand

1 CB 15.1960 33.6780 24.4740 C.3 1 =10.0 null ligand

“ Atom lines have been color-coded to match the colors shown in the template figure. These files are extensions of the mol2 file format. Atoms
numbers, names, coordinates, and types are unchanged from the original format conventions. The critical region field is used to define atoms/clusters of
atoms that must be present in any given target clique match prior to superposition onto the template. Region 1 is used to place atoms that will be ignored
for clique mapping. For this search the rgroup atom (region 3), linker atom (region 5), a designated benzamidine amino atom (region 4), and one of the
remaining heavy atoms (region 2) must be mapped simultaneously for successful clique extraction. The charge field is used as the color-weighting field
when chemical matching is used in place of electrostatic similarity. It can also be used to weight exclusion regions by setting a negative weight to less than
—10.0. For this search no electrostatics was used, so this field has been zeroed apart from the donor atom-matching portion and the single exclusion atom
shown (the full template file contains 40 exclusion atoms). Note that no weighting has been applied for group and linker atoms, as they form a separate
term in the overall KIN similarity (linker bond similarity) and are thus weighted independently in the KIN calculation input file (along with weighting
terms for shape and electrostatic/color mapping similarity). The final field is the KIN atom type. These atom types are defined in an extensively modified
version of DOCK'’s chemical definitions (chem.defn) file. For this search rgroup (atom that marks the disconnection point of the fragment, always Siin
KIN), linker (atom linking rgroup connection point), donor (hydrogen bond donor), mapping atoms (atoms that must be mapped geometrically without

reference to target atoms type), and null_ligand (atoms to ignore) have been used.

Protein Crystallography

Crystallographers have always worked with shapes. They
look at an electron density map, cut or contoured at a given
level, and interpret the shape to position the residue atoms
that comprise the protein or nucleic acid being studied.
Examples of tools that help to correctly place atoms, in
particular residue atoms, are such well-known graphic pro-
grams as O, Coot,>® and Quanta.>® These graphics packages
come with options to help choose the correct rotamer and
ensure that the geometry of each residue remains inside
reasonable boundaries. Further refinement between the struc-
ture factors of the atoms and the measured data is then
required before another round of visual checking of the
agreement between density and model can occur. And yet
because the “shapes™ are familiar, i.e., from a small repertoire
of possible amino acid shapes, few crystallographers would
make the claim or even realize they use shape.

Difficulties arise when placing small molecule ligand atoms
in density. Protein crystals rarely diffract to a high enough
atomic resolution to precisely locate all atoms. The ligands
themselves are often not clearly and completely defined in
their binding site, a condition usually attributed to low
occupancy or high mobility. Consequently, protein crystal-
lographers are often faced with a vague shape, roughly the size
of the ligand, in which to place a molecule with which they are
not familiar. In addition, chemists usually describe ligands
with one- or two-dimensional formats, while crystallographic

programs typically only understand three-dimensional (3D)
formats, in particular the PDB format. Protein refinement
programs require parameter and topology information for the
ligand in order to handle ligands appropriately. Most pro-
grams try to guess this information from a coordinate file
usually with poor results, especially since the typical resolu-
tion of protein crystallographic data precludes the inclusion of
hydrogen atoms. So to solve a ligand structure, the crystallo-
grapher needs to obtain a 3D structure of the ligand, deter-
mine relevant planarity and torsion information, and use
graphical tools that allow for the fine-tuning of a ligand
conformation in the visible density. This is a tricky problem
and sometimes results in a “nonideal” conformation when
using weak density. This problem is easily compounded by
stereochemical ambiguities, saturated cycles, or worse, cyclic
ligands.

Various attempts have been made to overcome some or
all of these hurdles, most of them implicitly using the shape
of the remaining electron density when the protein has been
resolved. The Quanta application X-Ligand®* first centers
the ligand on an unoccupied patch of electron density and
then searches the ligand conformational space to find the
best fit to density. The graphical program COOT also
searches clusters of density not occupied by the protein
and tries to fit the ligand by comparing rigid body refine-
ment values at each of the potential sites.’” If a ligand
dictionary has been provided, trial conformations are gen-
erated using the rotatable bonds to enhance the fit between
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HNT SNH2+

Figure 6. (a—c) Three search examples using KIN. Each example shows the template molecule with constraints applied (orange circles
highlight linker Gaussians; green circles highlight critical pharmacophoric “colored” Gaussian constraints), top 100 hits superimposed (shown
with green carbons), and one sample hit superimposed onto the template. The first linker bond database searched here contains ~8 x 10°
fragment conformers, the second linker database ~107. All timings were taken on a single AMD Opteron 2.1 GHz CPU. (a) Carbamate
replacement search. All charges in the template are turned off except carbamate NH hydrogen, and chemical definitions were set so hydrogens
attached to N/O are defined as special. Donor N are also set to be critical donor. Search time was 4 h. (b) Caveat'*® style search on biphenyl core
template. Loose SAR is assumed in core region (low shape (0.33) and electrostatic potential (0.0) Gaussian score weighting assigned, while both
linker bond Gaussian weightings are left at 1.0). Search time was 1.5 h. (c) Benzamidine replacement search. Search template was abstracted
from the PDB structure 2bz6 factor VIIa serine protease structure.'’ Protein heavy atoms within 4 A of the template were used as an exclusion
Gaussian region. Benzamidine NH2 mapping carboxylate within S1 subsite was defined as a critical donor, with only neutral replacement
fragments permitted. Linker Gaussian weighting was lowered (0.5) to allow more variability in linker bond vector position, and the linking
vector was switched to the meta position of the benzamidine phenyl group. Chemical match scoring was used, not electrostatics, with chemical
definitions modified to allow halide/sulfur donors. Search time was ~7 h.

ligand and potential site. The methods used by these
programs do not easily handle different stereochemistries
or configurations, as all variants have to be explicitly
defined, built, and placed in density.

More recently, both GlobalPhasing, which uses a molecular
replacement approach that works best on rigid ligands, and
the PrimeX method> from Schrédinger, which uses a docking
approach,®® have entered the field. Unfortunately neither the
manual fitting method nor automated methods (with the
possible exception of PrimeX) monitor geometric strain of
the ligand during fitting. This lack of monitoring can result in
“nonideal” conformations that appear to fit the density (or
shape) but have an unrealistically strained geometry, primar-
ily because crystallographers lack the utility of amino acid
Ramachandran maps. Can a shape-based method, complete

with strain analysis, do better? There is substantial evidence
that it can, which we will describe here in two ways: first with
an example of how the shape-based program AFITT®’
straightforwardly produces low-strain conformations in a
prospective project and, second, with a retrospective analysis
of its ability to find lower energy conformations of ligands
from protein—ligand complexes in the PDB.

Asillustrated in Figure 7, AFITT uses shape for three of the
tasks required for fitting a small molecule ligand: (1) identi-
fication of the density belonging to the small molecule, (2)
fitting low-strain 3D conformations of the molecule to the
density, and (3) optimizing a 3D conformation of the molecule
to maximize the shape overlap between the molecular shape
and the electron density while preventing a large increase in
geometric strain.
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For the first stage a “search density” is constructed by
subtracting it from the resolved portion of the structure. The
remaining density is queried to find pieces that have a
molecular volume similar to that of the ligand, as determined
by either estimating the volume given 1D or 2D input or
calculated using the Gaussian method of Grant and Pickup®
for 3D input. Regions with higher density (o) levels have a
higher probability of containing atoms. As a result, ligand
density detection can be automated by parsing o levels starting
from a high value downward until a volume of density
matching the volume of the ligand is discovered that is close
to the protein surface. The major difference between this
approach and the methods described previously is the identi-
fication of regions by isocontour surface, the AFITT technical
term being a “blob”. Contained within the blob is a piece of
density that can be manipulated as an abstract object; e.g., it
can be merged with other blobs when density for the ligand is
fragmented or edited/sculpted in cases where a low o level was
chosen and water or noise density is now associated with the

Figure 7. Workflow for AFITT ligand fitting.
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Figure 8. (a) Sudden addition of shape puts the molecule into a different energy well, i.e., conformer, leading to a nonadiabatic transition. (b)
Gradual addition of shape ensures that the molecule remains in the same conformation and gradually is modified to fit the electron density.
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blob. Once a final collection of blobs is chosen, the shape of
the contained electron density is passed to the second stage.

During the second stage a functional representation
(Gaussian) of the electron density shape is created and used
as the query for a rigid shape-based superposition between the
represented density and an extensive, if not exhaustive, en-
semble of low energy ligand conformations. The particulars of
this are the same as for the program ROCS* and result in a
very rapid evaluation even over thousands of typically low
energy conformations, taking a few seconds at most. Super-
positions for each rigid conformation are ranked by overlap,
and the best matches are passed to the optimization stage.

The last stage optimizes and relaxes the rigid superposition
of the ligand conformation to the selected electron density. It
does this under the combined influence of the Merck mole-
cular force field and a gradually increasing component of the
shape of the electron density. AFITT avoids overstraining
the ligand by continually checking the induced strain versus
the gain in shape matching, ensuring a limited geometric strain
while maximizing the shape complementarity between ligand
and electron density.®® This fitting is referred to as an “adia-
batic” fit because slowly changing the mixing of strain and
shape prevents “jumping” to a different conformation (energy
well), something that otherwise can occur when a fixed ratio of
the two forces is applied (see Figure 8).

Prospective Case. As noted above, human f-secretase
(BACE) is studied in the context of Alzheimer’s disease
because it cleaves amyloid precursor protein to generate A3
peptide. Inhibitors usually bind above the catalytic aspartates,
that are situated at the bottom of a binding site cleft. A “flap”,
in an open position in the apo structure, closes on most
inhibitors upon binding. In other cases, the protein, upon
binding an inhibitor, has been shown to adopt an open
position that is different from conformation of the apo
structure.®'-%?

Ex20 is a BACE inhibitor from Janssen that contains a
stereochemical center and two cyclohexane moieties each
capable of adopting different conformations (see Figure 9).
A data set of the complex was collected to 2.5 A resolution and
the structure solved by molecular replacement. After an initial
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Figure 9. Superposition of initial and final positions of the ligand
(green, AFITT; orange, refinement).

round of refinement, additional density was clearly observed
in the active site.

In the first AFITT stage the blob found in the active site was
smaller than the ligand. Visual inspection of the structure
showed that side chain of flap residue Tyr71 ought to be
rotated from the apo structure starting position to a new
position away from density present in the binding site (see
Figure 10a and Figure 10b). Once the position of the tyrosine
was modified, the program readily identified a blob of density
the size of the ligand (see Figure 10c).

As a test, we chose to enumerate the stereochemistry. The
program suggested one conformation for each stereoisomer,
with a clear preference for the R-stereoisomer (the details
are found in the Supporting Information Table 1); i.e., the
crystallographic data were used to successfully regenerate
the correct stereochemistry. AFITT placed both cyclohexyl
moieties in minimum energy conformations compatible with
the electron density.

Macromolecular X-ray refinement algorithms require the
generation and use of a force field parameter file for any small
molecule ligands, and AFITT generates such a file based on
MMFF94%7% parameters. The protein—ligand complex
structure (PDB code 2wjo) was readily refined in Buster®’~"°
to an Rpee 0f 24.0% and an Rep,eor Of 19.2% using this small
molecule parameter file (see Table 2 in the Supporting
Information for details).

In this complex, the flap adopts an open conformation
similar to that observed in the apo protein. The only difference
in conformation occurred for the side chain of Tyr71. The
rotation of Tyr71 created a hydrophobic pocket comprising
residues Val69, Tyr71, Trp76, and Phel08, into which the
phenyl moiety of Ex20 fits snugly. The observed binding is in
excellent agreement with previously reported structures for
other compounds in the series.”!

Retrospective Case. In a seminal paper by Perola and
Charifson’? the authors showed that about 10% of the ligand
conformations in 150 complex structures, 100 public and 50
private, had unacceptably high conformational strain. Using
two different sets of starting coordinates for the ligands, we
rerefined 39 of the public structures for which electron density
data sets were available. The first set used the deposited
coordinates for the ligand during rerefinement. The second
set used coordinates generated by AFITT; i.e., each ligand is
removed, an unbiased electron density is formed from the
structure factors, and the procedure described above is ap-
plied. Each ligand starts as a SMILES string, and so has no
memory of its original crystallographic coordinates. For each
set we then calculated the strain energy of the local minima,

Nicholls et al.

Figure 10. (a—c) View of the active site. Initial density after the
initial Buster round (done with apoprotein) is in dark-blue. Selected
“blob” is in orange. (a) Initial blob, prior to rotation of Tyr71.
(b) Blob found after rotation of Tyr71. (c) Same as in (b) plus initial
position of the ligand.

using MMFF and the electron density as a constraint during
minimization to keep the ligands in the same conformational
state. (Perola and Charifson used a similar method but with
coordinate restraints). In all cases the deposited coordinates
and AFITT generated coordinates had an equivalent fit to the
data as measured by the Rpcor- However, Figure 11 shows
that, with one glaring exception, AFITT generates a confor-
mation that is equivalent or lower in geometric strain when
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Figure 11. Difference in local conformational strain between rerefined ligands starting with an AFITT generated conformation versus the

deposited conformation.

compared with the rerefined deposited coordinates. In this
one exception there are two copies of the ligand, one of which
AFITT handles well and the other for which it fails to find a
low-energy conformation. This work was sufficiently en-
couraging that a project is currently underway over a much
larger number of structures.

In conclusion, we believe a shape-based approach to crys-
tallography has significant advantages. It is both intuitive and
easy to apply and seems to result in ligands of lower intrinsic
strain than traditional methods. An interesting future direc-
tion is the application to fragment-based drug design where
crystallography plays an increasingly important role. For
instance, when pools of fragments are applied to a crystal,
careful consideration of the distinctiveness of the shapes
within each pool may enhance the ability to resolve binding
events. With the shape concept in mind, many other applica-
tions in crystallography are likely to arise.

Pose Prediction

A number of tasks in structure-based drug design rely on
the availability of high quality models of the small molecule of
interest in the context of its macromolecular target. When
available, experimentally derived structures are highly prized,
as they represent models that contain the highest quality
information about the detailed interactions between protein
and ligand. However, during the course of a structure-based
design campaign, it is not reasonable to expect that every
compound in a series will have its three-dimensional structure
determined. This presents a great opportunity and a challenge
for molecular modeling: to accurately generate useful models
of the pose of a ligand in the protein active site using available
experimentally derived information.

Quite a few approaches have been developed for bound-
pose generation. At its most challenging level is the “docking
problem”. The docking problem is a difficult and currently
unsolved problem in the field. To succeed, docking requires

the ability to recognize the correct binding pose from a
potentially large number of alternative but probable poses
in the active site pocket. This is notoriously challenging, and
there is currently no scoring function that can do this robustly.
Generating the bound pose, without the ability to recognize it,
is of little use.

Other methods attempt to leverage structural data by
incorporating additional experimental data. For instance,
by incorporating the positions of known ligands located in
the binding pocket, one can potentially gain superior informa-
tion pertaining to prospective research. For example, estab-
lished methods utilizing ligand-only information to build a
“pharmacophore” can benefit significantly from using struc-
tural information of both ligand and protein.”® In its most
general sense, a pharmacophore is an attempt to extract steric
and electrostatic features that are common to a ensemble of
atoms, whether ligand or protein, that are directly involved in
bound interactions.”* To be of use to medicinal chemists, a
pharmacophore model needs to navigate a fine line between
being generally applicable and just encoding the specificity of
known ligands. Extrapolating from the known to the un-
known also requires careful alignments in order to organize
the data in a useful manner.

Alternative classes of pose generation strategies are the
hybrid 2D/3D graph-based methods for aligning query mole-
cules onto experimentally determined small-molecule struc-
tures. This is roughly analogous to homology modeling in
proteins, with the template in this case being a bound con-
formation of a known small-molecule inhibitor. A number of
template-based approaches to pose generation have been
reported in the literature, and we mention only a few here.
The CORES (complexes restricted by experimental struc-
tures) method’” breaks up bound ligands into core fragments,
which are then used to guide the docking of conformers of new
compounds that share common fragments. Methods based on
extensions to the concept of maximum common substruc-
ture’® have appeared recently in the literature, for example,
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the maximum overlapping set’’ that attempts to account for
common (but nonconnected) fragments between molecules.
A similar approach, termed graph-based molecular align-
ment,”® uses a more sophisticated optimization procedure to
more robustly bring molecules into common alignment.

The template methods described above all rely on an
atomistic representation in order to drive pose-generating
overlays. This has innate limitations; e.g., exploration of
new molecules must have closely matching atoms in very
similar arrangements in order for the overlays to succeed.
A more flexible approach employs molecular shape similarity
to more generally leverage knowledge of bound conforma-
tions. At a basic level, the method attempts to mimic not atom
positions and identities but rather the fundamental shape of
the bound pose. In this way it moves away from the rigidity of
prescribing atomistic arrangements.

There are many possible realizations of this approach. One
straightforward method is to pregenerate a set of conformers,
then overlay this set of conformations using shape, and then
rank order the overlays based on shape similarity.”” We have
taken this approach on a set of 340 protein—ligand structures
across 28 different targets from the Lilly data set originally
constructed for studying docking and posing.*® For each
structure we generate a SMILES string for the bound ligand,
then input this into Omega®' (version 2.3.2) to generate a set of
conformations, followed by shape-driven overlay onto the
cognate ligand conformation as in ROCS. The performance
of this method is shown in Figure 12a (red squares) and can be
seen to be effective and is an easily implemented procedure.
We refer to this method as “Omega-ROCS”.

An improvement on the Omega-ROCS approach is the
topic of the present study and represents a more robust
method for generating shape-driven poses we have called
Shapefit. The inspiration for this method is the fitting ap-
proach to crystallographic refinement used by AFITT, as
described above. In the case of Shapefit, the density being fit is
the molecular Gaussian function produced by the bound
ligand, which could be thought of as a type of ideal electron
density. Comparison of the performance between Omega-
ROCS (red squares) and Shapefit (blue triangles) is shown in
Figure 12a. As expected, the results from Shapefit are system-
atically superior to using Omega-ROCS in fitting the ligand to
itself, albeit from conformations generated from its SMILES
representation.

However, reproduction of a known cognate ligand con-
formation is not the primary motivation for this work. We
wish to use experimental knowledge of bound ligands, in the
context of the host protein, to leverage prospective predictions
of bound poses with some measure of a degree of confidence in
the output. Thus, we require a way to quantify our proximity
to what is known experimentally and use this as a measure to
report quality in the prediction. To do this, we selected a set of
363 ligand pairs across the 28 representative targets and
generated a bound pose using the Shapefit calculation on
progressively dissimilar pairs of ligands for each target. In this
way we attempted to gauge the decline in effectiveness as the
similarity between the two molecules decreases. Shown in
Figure 12b are the results of this analysis. It can be seen that as
the shape and color similarity, as measured by the Tanimoto
Combo, between the docked molecule and the bound (shape
guide) molecule decrease, the range of rmsd values, as calcu-
lated between the docked molecule and its known bound
conformation, increases. Tanimoto Combo here is simply
the sum of the Shape Tanimoto, defined above, and the Color
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Figure 12. (a, b) Here, 340 crystallographically determined pro-
tein—ligand structures were used, from 28 different protein targets.
The first graph shows the fitting of each ligand to itself, using either
ROCS (red squares) or the Shapefit gblue triangles) method. The
Omega-ROCS method uses Omega''® (version 2.3.2) with max
conf = 30000, energy window =100 kcal/mol from the SMILES
string of each ligand followed by overlay with ROCS''! (version
2.3.1); the Shapefit method takes each such alignment and further
optimizes the Tanimoto Combo score. The Tanimoto Combo and
rmsd are calculated for the highest scoring pose against the crystal
structure. Part b shows Shapefit overlays for 363 ligand pairs,
chosen randomly from within target series. In this plot the rmsd is
calculated as before but the Tanimoto Combo is calculated between
the two (different) overlaid molecules. A cutoff of around 1.4 in the
Tanimoto Combo is sufficient to provide a high degree of confi-
dence in the heterologous pose prediction.

Tanimoto, where the latter is similarly defined as the overlap
of “color” Gaussians, i.e., representing chemical functional-
ities, divided by the difference between the self (color) overlaps
and the color overlap of the two molecules. A Tanimoto
Combo cutoff of around 1.4 is a good threshold above which
reliable results are obtained.

We examined two specific examples of ligands with bound
conformations that proved challenging for the Omega-ROCS
method. Shown in Figure 13 is an extended “bent-back”
conformation of a bound inhibitor whose conformation has
been determined by X-ray crystallography. Figure 13a shows
the overlay produced by Omega-ROCS (cyan-colored
carbons), and Figure 13b (pink-colored carbons) shows that
for Shapefit. The X-ray crystallographic pose is shown with
green carbons in both figures. It can be seen that the overlay
produced by Shapefit is of significantly higher quality.
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Figure 13. (a, b) Example showing performance of two overlays for
the Omega-ROCS and Shapefit methods. The X-ray crystallo-
graphically determined conformation is shown with green carbon
atoms. (a) Omega-ROCS generated pose, shown with cyan carbons.
(b) Shapefit generated pose, with pink carbons. The robustness of
the adiabatic fitting algorithm in Shapefit produces systematically
superior overlays.

Finally, in Figure 14 we show another example of a
comparison between the overlays produced by the two meth-
ods. As with Figure 13 the X-ray crystallographic ligands are
shown with green carbons. In Figure 14a is shown the overlay
produced by Omega-ROCS, and in Figure 14b we show the
Shapefit produced overlay. For both examples Shapefit is the
superior method.

Our conclusions are that using Omega to pregenerate
conformations followed by overlays performed by ROCS gets
you close but is not sufficient to drive the ligand overlay to a
pose sufficiently equivalent to the cognate pose for practical,
prospective use. We have illustrated this by comparison to a
more robust method, which uses an adiabatic algorithm to
couple force field to shape. The Shapefit methodology seems
to be systematically superior for performing pose generation
when one possesses knowledge of existing bound conforma-
tions of similar molecules. There are still outstanding issues
here; for example, how do we use multiple ligands in this
process? Do we just use the one closest in shape and color
space or a weighted combination of all the results? To what
extent can we use binding information from homologous
proteins? Can we use a combination of shape matching and
graph-based methods to better effect? What we believe we
have shown is a clear demonstration of the value of shape
information in pose prediction; future work will inevitably
increase our understanding of how to use it most effectively in
structure-based design.

Library Design

Modern library design increasingly adopts rational strate-
gies intended to maximize the biological relevance of mole-
cules. This results in relatively small libraries and an emphasis
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a) P
Figure 14. (a, b) Another example comparing the performance
between Omega-ROCS and Shapefit methods. The X-ray crystallo-
graphically determined conformation is shown with green carbon
atoms. (a) Omega-ROCS generated pose, shown with cyan carbons.
(b) Shapefit generated pose, with pink carbons. The robustness of

the adiabatic fitting algorithm in Shapefit produces systematically
superior overlays.

on populating screening collections with many different scaf-
folds.*? Given the importance of the shape of a molecule in
molecular recognition, a rational strategy would be to incor-
porate control of shape variability into the design of libraries,
for instance, as has been commented, to avoid collections that
are too “flat”.® The approach at AstraZeneca has been to
define the “shape-space” we want to cover by using reference
shapes obtained by using a simple clustering procedure pre-
viously described.®® In short, the shape similarity to an initial
reference structure is calculated for a set of molecules and the
most dissimilar is chosen as the second reference shape. Shape
similarities are calculated to this second structure, leading to a
third reference structure that is least similar to the first two.
The procedure continues until the level of minimum similarity
remaining to all reference structures is higher than a cutoff
criterion. The number of reference shapes so obtained is very
dependent on this value. For our purposes, a suitable level of
discrimination is an ST of 0.75.*' This level of similarity is
sufficient both visually (important for chemist buy-in) and
empirically for virtual screening. Figure 15 illustrates the
strong (exponential) dependence of the number of reference
shapes on heavy (non-hydrogen) atom count (HAC). This
makes the extension to larger molecules problematic. How-
ever, a common feature of molecules designed for screening is
that they should have a reduced complexity.®> One of the
simplest ways to ensure low complexity is to limit the mole-
cular weight range®® or alternatively the HAC range. A useful
range for leadlike libraries is a molecular weight less than
450%7 that is approximated by molecules with 26 or fewer
heavy atoms. Figure 16 shows examples from the 5408
reference shapes produced from an analysis of one million

“ Abbreviations: ST, Shape Tanimoto; PPI, protein—protein inter-
actions; HAC, heavy atom count; USR, ultrafast shape recognition;
SM, steric multipole; OMI, overlap from moments of inertia.
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Figure 15. Number of reference shapes generated when clustering
molecules grouped by heavy atom count. The plot is extended from
18 to 26 heavy atoms to show that the behavior remains smooth.
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Figure 16. Reference shape examples from a 1 million molecule
library (HAC between 12 and 26).

commercially available compounds with a heavy count
(HAC) range of 18—26.

The shape clustering method is designed to ensure that each
of the one million molecules is “close™ to at least one of the
reference shapes. The accuracy with which shape-space is
covered is tested by assigning a different set of two million
commercially available compounds with the same HAC range
to the reference shapes. We found that only 0.1% of these
molecules are more dissimilar than 0.75 ST to any reference
shape. This confirms that the reference shapes are a good
representation of the shapes of molecules in this HAC range.
Molecules may actually be closer than the cutoff criterion to
more than one reference shape; in fact on average each
molecule is close to about six reference structures. However,
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Figure 17. Coverage of the 3 million molecule database by the top
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Figure 18. Shape profiles of a library formed from a simple amide
coupling reaction (bottom) and a sulfonamide coupling reaction
(top). Two design holes in the amine-coupling library are well filled
by the sulfonamide coupling.

some reference shapes “cover” more molecules than others
and this leads to the concept of shape “popularity”. This
popularity is quite nonuniform, and a relatively small subset
of shapes are close to a large proportion of molecules,
reminiscent of the dominance of few common frameworks
in analysis of chemical scaffolds.®®® In fact, as shown in
Figure 17, 500 of the most popular reference shapes cover
about 90% of the 3 million molecules. As such, these 500
reference shapes define a practical method for quantifying
shape variability in library design.

One strategy for designing a screening collection is to ensure
an approximately uniform distribution of molecules among
the reference shapes. This is difficult to achieve without some
aspect of design because of the “power-law” distribution of
the popularity of the reference shapes; i.e., a simple random
selection would be biased toward just a few of the popular
shapes. Figure 18 shows a profile of a library formed from a
simple coupling reaction to produce amides. The profile has
the expected characteristic of a few well-populated shapes.
However, it also shows that even this simple reaction pro-
duces molecules with a good degree of shape variability, which
by careful selection could be used to augment a screening
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Figure 19. Possible design strategies for shape libraries. The nat-
ural abundances of shapes can be adjusted to be uniform or to reflect
biological knowledge as to the best shapes screen.

collection, to improve its overall shape profile. Careful in-
spection also shows that there are specific gaps in the shapes of
this library, for instance, reference shape 320. In contrast, a
profile of a library in which the same reagents are coupled to
produce sulfonamides, populates shape 320 as shown in the
figure. The two chemistries complement each other in the
construction of a diverse shape library.

Two other design strategies can also come into play. The
first is to include other notions of diversity, such as those
based on chemical similarity, or other molecular properties,
i.e., such that molecules similar to a given reference shape
populate an “orthogonal” axis. One appealing property that
complements the simplicity of shape is the electrostatic po-
tential. Initial experience with such suggests the diversity of
potential maps is as expansive as shape itself, making com-
plete coverage difficult. The second is to deviate from uniform
coverage toward biological activity; i.e., it may be that some
shapes are preferred for activity. Thisisillustrated in Figure 19
but is currently still speculative, in particular because the past
history of compound construction may bias our findings.
Current research is aimed toward exploring these questions
and the underlying shape space of druglike molecules.

Binding Site Shape

KOMPAS, ajoint project between GSK and OpenEye, was
designed to generate negative images of active sites for use in
virtual screening when the native ligand is unobtainable or
unrepresentative of the desired small molecule. The mathe-
matics and implementation of this rely heavily on the form-
alism developed by Pickup and Grant.”® In that work the
authors show that molecular volume, as defined by a set of
fused spheres, can be accurately represented by a set of
atomic-based Gaussians, an observation that gave rise to
ROCS. They further showed that the derivative of the func-
tion formed from this set of Gaussians, with respect to atomic
radii, has the character of an area. Considering the approach
of two atoms, they reasoned that although the overlap of
representational Gaussians increases, this area term decreases.
As such, with appropriate parametrization, a linear combina-
tion of overlap and “area” can simulate the repulsive and
attractive terms from van der Waals forces but with the
familiar advantages of Gaussian functions. This Gaussian-
equivalent of dispersion forces has been used in docking;”
here it is used in a shape context to define small volumes of
high contact potential between a probe carbon atom and the
protein on a regular cubic lattice. Contouring of this grid
produces “cores”, small, distinct volumes that form the basis
of putative molecular shapes. Selection of a set of proximal
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Core Blob

Figure 20. Illustration of shape generation in KOMPAS. On the
left is a contour of a Gaussian contact function for 6COX. This is
not derived using the ligand. On the right is the result of convoluting
this shape with a Gaussian the volume of a carbon atom and
recontouring.
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Figure 21. Illustration of the effect of adding “color” points to the
active site shape generated for 2ERT. Just three points describing
likely interactions with the protein, added by graphical editor,
rescue the poor performance of the raw shape.
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Figure 22. Atleft are two small molecules with specific musk odor.
At right are two molecules that differ by only a single methyl group
from the top musk but that exhibit no musk odor. Musk activity is
assessed by professional “noses” and quantified generally as strong,
weak, or absent. Activity is driven by specific agonism of GPCRs in
the olfactory neuroepithelium; the ligands above were part of the
study that introduced the Compass’® technique. Inactivity of the top
nonmusk may be due to inability to activate an allosteric switch in
the olfactory GPCR responsible for musk perception; it cannot be
easily explained by a decrease in binding affinity. The bottom
nonmusk may simply be too large for the active site, but there
may be other mechanisms. In making this distinction, it is clear,
however, that the issue comes down to shape in quite a pure sense,
since the molecules are rigid.

cores followed by convolution by a sphere or Gaussian
representation of a carbon atom expands these cores into a
ligand-like shape. An example of this process is shown in
Figure 20. These shapes can then used as the starting points
for shape-based virtual screening.

Prospective Example. Protein—protein interactions (PPI)
are challenging targets for small-molecule drug discovery.”!**
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Figure 23. Molecular shapes can be characterized by the distances to the molecular surface from points in space. The differences in these
distances form the basis for comparison between molecules. At top, a musk and nonmusk are cartooned with distances from observers placed
outside their surfaces. The corresponding distances are longer on the lower left, where the methyl group is missing. This is depicted in 3D, with
the differences in distances shown as rods emanating from observers. By use of a normalized Gaussian function of the distance differences, a
similarity function can be defined whose optimum rewards surface concordance but yields a limited penalty for discordance. The function is
continuous and piecewise differentiable with respect to molecular pose, which has advantages for optimization of relative poses.

Even when PPI crystal structures are available, finding good
small molecule leads for chemistry optimization can be diffi-
cult. Rational design starting with the protein or peptide
partner is one option, but this approach is often not ideal.
The binding site can be shallow and/or dominated by a few
key interactions of distal residues. If the designed molecule is
too peptidic, pharmacokinetic issues will arise. Consequently,
many rounds of optimization are required to develop a more
druglike molecule. Thus, synthesizing peptido-mimetics may
not be the most straightforward route. Furthermore, the
natural protein/peptide partner may not occupy the full
binding site, and because of the shallow nature of the pocket,
a small molecule inhibitor maximizing every available inter-
action in the site is most ideal.

KOMPAS was used toward this end in a current PPI
project at GlaxoSmithKline (GSK). Filtering by shape

volume and site depth resulted in three shapes for three
different sites, which appeared by inspection to be drug-sized
and deep enough to potentially inhibit the PPI. The peptide
bound to the protein target passed through each of these three
sites. ROCS virtual screens against the GSK compound
collection were then carried out for the three shapes, and the
top 10000 shape-matched compounds per site were retained
and filtered with the Gold, version 3.2, docking program using
the high-throughput settings and ChemScore”** scoring
function for each site. Top scoring poses were then visually
inspected within their respective binding site. From the shape
virtual screening exercise, 200 compounds were screened
in a cell reporter assay resulting in five hits representing
three chemotypes for two of the three identified sites. Later,
a high throughput screen (HTS) was run utilizing a binding
assay designed to measure disruption of the protein—peptide
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Figure 24. Two serotonin ligands with differing underlying scaf-
folds are shown. The concept of observers and distances generalizes
to polar surfaces by measuring minimal distances (and directions) to
charged atoms. The highest scoring mutual alignment is shown at
top. Despite significant differences in the underlying scaffolds, the
procedure is able to identify joint poses where the steric envelopes
are remarkably similar, the charged amines are tightly aligned, and
the oxygens of both ligands are able to accept hydrogen bonds from
the same part of space. The differences are very minor (bottom
panel), primarily resulting from the change from hydroxyl to
methoxy, resulting in the gray difference rods (steric differences)
and the blue difference rods (indicating a missing donor on the
ligand with blue carbons). Other differences are minor, with very
slight differences in position and orientation of the acceptor func-
tionality of both molecules. Overall similarity is 0.82 (scale of 0—1).

interaction, and compounds with the aforementioned chemo-
types were active with pICs, values in the 4—5 range. The
pICs for the best HTS hit was 6.5, indicative of the challenge
of finding potent inhibitors of PPIs via HTS. Orthogonal
biophysical assays ruled out two of the three chemotypes, but
one shows weak binding by surface plasmon resonance (SPR)
studies. A small set of compounds was synthesized by the
GSK Exploratory Chemistry group to generate SAR based on
the predicted binding mode generated from the shape/docking
protocol. For the chemotype with activity in the binding assay
and SPR, removing the key predicted pharmacophore ele-
ments eliminated all activity and SPR binding.

Retrospective Example. Defining active site volumes is an
imprecise science, and using just shapes as queries for virtual
screening provides a relatively porous filter. In PPI this is not
so important because one is typically looking for the unusual,
and so the lack of restriction can be an advantage. However,
there are often clear interactions with the protein that could be
captured in addition to shape that would aid in discovery.
A retrospective example illustrating this from the DUD data
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set” is shown in F igure 21. The three interaction, or “color”,
points are added using a graphical editor. This consists of
selecting several points on the surface of the contour and
averaging their position for each color point to be added. They
are then further defined by their hydrogen-bonding character
and were selected on the basis of knowledge of the protein and
known ligand, although it should also be possible to just use
the protein in a prospective manner. A shape, or shape plus
color points, is then used as standard input to the ROCS
program; i.e., conformational expansions of known ligands
and decoys, in this case generated by Omega (version 2.3.2),
100 conformations at most per molecule, are scored based on
their best overlap to the input and standard statistics for recall
calculated. As can be seen, just a few judiciously chosen color
points can make a startling difference in recall rate, as
measured by the area under the curve (AUC) for the DUD
actives and designed decoys for this target. Shape alone does
not distinguish at all between the decoys and actives, while the
addition of chemical typing gives close to a perfect separation
between classes.

Reinvestigation of the PPI target using such added infor-
mation is currently underway. The potential to annotate
shapes also may overcome one of the disadvantages we found
in generating such shapes when intense electrostatic inter-
actions are prevalent. KOMPAS shapes are constrained to
average contact potentials, and areas of strong electrostatic
complementarity often have van der Waals interactions be-
yond this normal range; i.e., they do not appear in the core
shapes. Changing the Gaussian parameters to extend the core
domains can ameliorate this, but this then causes clashes with
the more hydrophobic parts of the protein. A more general
solution that either incorporates both types of contact shape
or that automatically annotates the hydrophobic shape with
donor and acceptor sites would go a long way to solve these
problems.

In summary, it is unclear if the chemotype identified by the
shape generation/docking protocol will be incorporated into
an inhibitor molecule for this PPI program and studies are still
ongoing. Nonetheless, shape technologies appear to be pro-
mising tools for representing a virtual molecule in a binding
site, especially for PPI targets where every A? of binding site
surface area can be critical for affinity. In this example, the
program team believed in the shape concept and experimen-
tally screened molecules selected by this shape-based virtual
screen. At a minimum, we now better understand the func-
tionality we desire from shape-based computational tools and
look forward to progress in this area. Finally, application of
this technology to protein—protein comparison is straight-
forward, while the potential to apply the shape concept to
polypharmacology and to specificity prediction remains to be
tapped.

Shape from Surfaces

The intention here is to discuss a slightly different approach
to that described earlier in this article and that has been
developed with the goal of describing molecular shapes
accurately as surfaces with properties such as polarity.

Whereas many representations can be thought of as 3D,
subtle surface differences are challenging to capture, but
subtle differences can have large effects. Figure 22 shows the
striking effects of addition or deletion of a single methyl group
to render a simple and relatively rigid molecule devoid of
activity mediated by an olfactory GPCR. Figure 23 shows an
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Figure 25. Surface comparisons of this type can be highly effective for virtual screening. Here, a competitive serotonin ligand (methysergide,
shown with blue carbons) was identified in a virtual screen at a false positive rate of less than 3% against a set of druglike screening compounds.
The size difference between the ligands would pose a challenge for approaches that rely upon concordant volumes or upon pose optimization
strategies that penalize mismatches instead of rewarding matching features. The similarity of methysergide to the angular tricyclic serotonin
ligand was 0.73, reflected in the degree to which the similarity sticks populate the surface of the target ligand. The right-hand panels attribute
similarity to the atoms of the angular tricyclic compound (gray carbons), with green rods indicating high shape similarity, red indicating high
similarity for negative polar moieties, and blue indicating high similarity for positive polar moieties.

approach to shape characterization that is capable of discri-
minating fine changes in molecular structure in a scaffold-
independent way. The approach characterizes molecules as
collections of distances from observation points in space. The
collection of minimal distances to a molecule from a fixed set
of observers encodes a packing of spheres that graze the
surface of a molecule, forming essentially a perfect binding
pocket around the molecule in question. Differences in the
radii of the spheres can form the basis for comparison of
molecular shapes. This basic representation underpinned
the Compass 3D QSAR approach’®™*® (no relation to the
Kompas project described above).

In the development of this approach, construction of virtual
binding sites entailed two complications. The first was how to
address the question of which ligand poses were relevant to
biological activity. This was addressed by developing a form-
alism for machine learning wherein one could simultaneously
choose poses of ligands while estimating the parameters of the
model for the ligands’ activity. An elegant formalization of this
early work on musks, called multiple-instance learning,” has
found applications in many areas of machine learning. The
second complication was how to address the issue of molecular
surface polarity. A straightforward extension of the distance-
measuring concept from Figure 23 is to measure different sets
of distances, each to different sets of atoms. One set of distances
corresponds to the minimal distance to any atom. Another set
corresponds to the minimal distance to any hydrogen bond
acceptor or formally negatively charged atom. The last corre-
sponds to distances to donors or positively charged atoms.

With the addition of directionality (the degree to which an
observer and a particular atom are compatibly oriented) and
charge magnitude, a generalized function of molecular simi-
larity was developed'® and subsequently generalized to spe-
cifically address virtual screening considerations.'”! Figure 24

shows the application of the approach to identifying an
optimal joint superimposition of two competitive SHT1a
ligands. Underlying scaffolding is unimportant, with both
ligands exhibiting remarkably similar surfaces, in terms of
pure shape and the disposition of polar moieties. Such joint
superimpositions may be used as the target for virtual screen-
ing, much as one uses protein binding pockets for docking.
Figure 25 shows the result for methysergide, a SHT1a ligand
of very different structure from those that formed the screen-
ing target. The advantage of constructing a similarity function
that rewards surface concordance (as opposed to penalizing
deviation or computing volume overlap) is that a ligand such
as methysergide, which extends beyond the envelope of the
known ligands, can be retrieved at a very high rank against a
background of diverse, druglike screening molecules.

This conceptualization of molecular similarity is quite
general, and it can be applied to comparing protein surfaces.
Figure 26 shows an alignment of CDK?2 and c-Met, the former
being a cyclin-dependent serine—threonine protein kinase and
the latter being a tyrosine kinase. The biological functions of
these proteinsis quite different, in terms of their substrates and
their regulation, owing in large part to the very different
overall exterior architecture of the two proteins. However,
their ATP binding sites are actually quite similar, especially in
the core region. Figure 27 shows a set of observers placed
around the ligand of CDK2. The alignment of c-Met was
optimized relative to the surface measurements made from
these observers, resulting in the correct correspondence of the
proteins. Despite their different biology, both proteins are
effectively inhibited by staurosporine or close analogues. The
pocket similarity can be quantitatively related to propensity to
bind the similar ligands in the same fashion.

An interesting duality exists between proteins and lig-
ands when one considers different methods for similarity
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Figure 26. Two proteins are shown: CDK2 (1KE®6, green) and c-Met (1ROP, red). They have modest sequence identity (less than 20%) and
significant differences in overall structure at a global scale, especially in the right-hand lobe (evident at left). However, their binding sites (with
bound ligands at left) are quite similar in structure (right). In the hinge region, c-Met makes use of a proline and tyrosine and CDK2 makes use
of a glutamine and phenylalanine (blue arrows), but the surfaces are similar enough that both enzymes will bind staurosporine analogues in
similar orientations, with analogous hinge binding interactions (hinge acceptor and donor are circled in yellow).

Figure 27. The protein alignment of c-Met to CDK2 was computed from the observers shown here outside the ligands (left panel). The right
panel shows the relative alignment of the ligands (viewed from the right side of the left and middle panels). The analogous polar interactions of
the two ligands (red arrow) manifest as an area of high similarity between the proteins. The overall binding pocket shapes are also relatively
concordant (green sticks). The cognate ligand of the c-Met structure was closely related to staurosporine (blue carbons), which itself'is a potent
CDK2 inhibitor. The relatively high similarity in active sites between c-Met and CDK2 is exhibited both directly in the surfaces of their ATP

binding sites and in the ligands that bind them.

computation. In the case of small molecules, we see a great
deal of population of the space of ligands that are obviously
similar to an existing known ligand in a 2D sense. We believe
this is because 2D reasoning is a significant part of the design
mechanism of man-made ligands.'> However, when a target
has been around for a long time, substantially more varied
scaffolds are discovered, many of which are quite similar in a
3D sense to previously known ligands but which are quite
different in a 2D sense. In the case of proteins, we see large
families that represent small steps in terms of the mechanism
of design (evolutionary steps of sequence modification). For
ligands that have been in nature for evolutionarily lengthy
time periods, such as ATP, we observe relatively conservative
variations such as human CDKZ2, its species variants, and
related proteins in very different organisms (e.g., CDC2 in
yeast). We observe moderate jumps (e.g., c-Met as shown in
Figures 26 and 27), where very significant local similarities
relating to sequence are present. However, we also observe
remarkably different binding sites that make use of ATP.
Proteins such as phosphodiesterases (e.g., PDE4b and
PDE35a) use a completely different architecture to make use

of ATP, but the surfaces of the binding pockets can be
correctly aligned using the approach to similarity discussed
here.

Similarity metrics that are mechanistically related to a de-
sign process, 2D approaches for ligands and sequence-based
approaches for proteins, are able to identify large numbers of
functionally related molecules, but these are just the “ob-
vious” set of relationships. By making use of shape, which is
physically related to the fitness of a molecule for a purpose, we
can identify both the obvious and the nonobvious relation-
ships among molecules, both large and small.

Approximate Shape Methods

[t is only the ever-increasing computational power of the
past 20 years that has enabled meaningfully exact shape
comparisons to be fast enough to be practical. But every
increase in computational facility also increases the potential
scope of problems to be tackled. So, for instance, although a
ROCS-type calculation takes about a millisecond to compare
two conformers, large enough libraries make this seem slow.
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As such, faster but approximate methods might seem to
have a role to play either as a prefilter to more exact
calculations or as an adequate replacement. Other fields
have faced similar issues; human fingerprints used to be
matched laboriously by forensic experts. The development
of feature reduction to “loops”, “arches”, and “whorls”
allowed automated systems to screen millions, and given a
sufficient number of feature matches, individuals can be
identified with statistical confidence. Can the same be said
of approximate shape methods? Here we have examined
three candidates: our implementation of the ultrafast shape
recognition (USR) method,'%*!%* steric multipole (SM)'°°,
and finally overlap from moments of inertia (OMI). The
OMI method is essentially ROCS without any of the time-
consuming optimization of alignment, i.e., taking the over-
lap straight from two molecules aligned by moments of
inertia. USR and SM generate a set of descriptors, 12
and 10, respectively, that are compared through sums of
differences and as such are very fast, theoretically millions
per second, whereas OMI is about an order of magnitude
slower but still much faster than ROCS.

The graphs in Figure 28 and 29 illustrate the problems of
these methods relative to the “exact” solution, i.e., a Shape
Tanimoto derived from ROCS. In this test we have compared
each target molecule in DUD to all the conformations of other
actives and decoys, leading to about two million comparisons.
Although each method has a correspondence with shape, the
scatter illustrated in Figure 28 is considerable. In fact neither
USR nor SM have much correspondence with shape. Why is
this? One can learn much by examining the worst mistakes, as
illustrated in Figure 29. Points in the upper left of each graph
represent false negatives, i.e., shapes that are in fact very
similar but that a method thinks are different. These are
particularly prevalent with USR, and an example is given in
Figure 29a. In general, false negatives are characteristic of
“fragile” methods; i.e., small changes make large differences in
the descriptor set. USR is particularly prone to these because
of the sensitivity to the position of extremal atoms. If two
atoms quite separate in space are each close to being the
farthest from the molecule midpoint, a central part of the USR
approach, then the removal of either may shift the definition
of “extreme” and have a dramatic effect on the descriptor set.
Figure 29b illustrates an example taken from the bottom right
of the SM graph. Here the problem is one of false positives,
i.e., molecules “masquerading” as being similar when, in fact,
they are not. Steric multipoles are particularly sensitive to this
because the multipole approach is weak on internal detail,
capturing only the coarser aspects of shape. Hence quite
different shapes may appear similar to the SM approach;
i.e., the method is “blunt”. Finally, the OMI method correlates
well with the underlying similarity but illustrates that as the
actual similarity gets worse, so does the variability of the OMI
prediction. This is to be expected. When two shapes are very
similar, ROCS does not have to search far from the inertial
alignments, whereas the converse is true for very differently
shaped molecules. Another advantage of OMI is that it gives a
spatial alignment, a point that will be expanded upon below.

Next we looked at each method in terms of its virtual
screening performance. The DUD data set is as close to a
standard as the field currently possesses, even though the issue
of the congeneric nature of the active classes and the appro-
priateness of its decoy set is well-known. Figure 30 illustrates
the AUC values for the recall of actives using the standard
DUD target, actives and decoys, averaged over 40 systems. As
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Figure 28. Contour plots of Shape Tanimoto, as calculated by
ROCS, versus three approximate methods, USR, steric multipoles,
and shape score from the best alignment by moments of inertia.

can be seen, each approximate method has an average AUC
approximately the same as that from just using the number of
heteroatoms as a descriptor, a truly “blunt” measure and
much worse than full ROCS that includes both shape and
color descriptions. A positive view of this result is that the
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Figure 29. Examples of false negatives pairs from USR, illustrating its fragility as a shape measure, and false positives pairs from steric

multipoles, illustrating its bluntness as a measure of shape similarity.

approximate methods are no worse than using the full des-
cription of shape. And yet if their correlation to shape is so
poor, as we have shown above, this implies that some other
feature is inadvertently being encoded that has some very
slight value in discerning actives from decoys. These may be
entirely artificial, i.e., because although DUD decoys are
meant to be property matched, there may still be some less
obvious indicators that say “decoy” to some descriptors.
Clearly pure shape does not do very well in this retro-
spective study. Does this mean that coarse descriptors are as
useful as shape? We would claim not because a shape match

also includes an alignment in space. This allows the evaluation
of 3D chemical similarity that greatly surpasses the other
methods considered here, as illustrated in Figure 30. This
figure shows what happens if a color score is added to the
inertial alignments of the OMI method. This greatly improved
performance, at almost no additional cost, illustrates the
advantage of methods that are not pure reductions to des-
criptor sets but rely on the information that comes from a
meaningful alignment. In other words, methods that are
rotationally invariant may be fast but they also miss the point,
or should we say the ‘volume™?
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Figure 30. Virtual screening performance on the DUD data set of
shape multipoles, USR, the number of heteroatoms (“HeavyCount”),
a shape score from the best moments of inertia alignment with and
without color, a shape score from the best ROCS alignment with
and without color.

Finally, we consider whether approximate methods might
act as prescreen tests for more diligence by more CPU costly
methods. In the early days of human fingerprint comparison,
approximate methods would routinely rely on expert analysis
of a set of potential matches, and to this day there is still an
element of human intervention after computations are fin-
ished. The issue here, then, is the degree to which false
positives and false negatives can be tolerated. The former
mean the additional testing of unproductive molecules; the
latter means the loss of matches entirely. As false negatives
cannot be recovered, we suggest erring on the side of methods
with more false positives than negative behavior, i.e., blunt
rather than fragile. This profile fits the SM profile well;
however, if one sets a reasonable threshold for “misses” of
10%, the false positive rate is fairly overwhelming. At this
error rate only a 4-fold reduction in conformers is achieved.
The problem is just that approximate methods are too noisy.
Either too much is lost through fragility or too much is let
through by bluntness. In a Pareto-sense, the OMI approach
with added color seems to have most to offer. It is fast and
captures more of shape than other approximate methods, and
the addition of proximity matching of chemistry to its align-
ments is invaluable.

The problem of approximate shape matching has been
considered in other fields, such as robotic vision. Here the
problem is the identification of objects against an internal
store of known structures, a problem more diverse and
difficult than molecular recognition. The field has created
many approximate methods, some similar to those consid-
ered here, but these are, in general, considered lacking. In
his Ph.D. thesis, Kazhdan'% suggests this is because shape
similarity has a well-known metric property; i.e., the dis-
tance between two shapes has an identifiable mathematical
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structure. Methods that do not approximate this metric
inevitably fail to capture the essence of shape, whether
through fragility or bluntness; they hit frustratingly low
glass-ceilings of performance that cannot be breached.
Work on shape comparison of molecules recapitulates these
observations. They are certainly fast, but they are not good,
and even the apparent speed has to be considered in the
context of the time taken for the construction of ancillary
information, for instance, the necessary molecular confor-
mations. Only when this cost can be amortized over many
searches are approximate methods actually faster than
thorough shape comparison. In summary, it seems uncer-
tain as to whether approximate methods are good enough
to be considered useful.

Summary

The eight contributions here provide ample evidence that
shape as a volume or as a surface is a vibrant and useful
concept when applied to drug discovery. It provides a reliable
scaffold for “decoration” with chemical intuition (or bias) for
virtual screening and lead optimization but also has its
unadorned uses, as in library design, ligand fitting, pose
prediction, or active site description. Computing power has
facilitated this evolution by allowing shape to be handled
precisely without the need to reduce down to point descriptors
or approximate metrics, and the diversity of resultant applica-
tions argues for this being an important step forward. Cer-
tainly, it is encouraging that as computation has enabled our
intuition, molecular shape has consistently surprised us in its
usefulness and adaptability.

The first Aurelius question, “What is the essence of a
thing?”, seems well answered, however, the third, “What do
molecules do?”, only partly so. Are the topics covered here
exhaustive, or is there more to come? To date, there has been
little published on the use of the volumetric definition of shape
described here as a QSAR variable, for instance, in the
prediction or classification of activity, although other shape
definitions have been successful applied, for instance, as
embodied in the Compass program described above in “Shape
from Surfaces”. Crystal packing is a phenomenon much
desired to be understood. Although powerful models have
been applied to the problem,'"” to what degree is this domi-
nated purely by the shape of a molecule? The shape compar-
ison described here is typically of a global nature, and yet some
importance must surely be placed on partial shape matching,
just as the substructure matching of chemical graphs has
proved useful. The approach of using surfaces, as described
here, offers some flavor of this, as does the use of metrics that
penalize volume mismatch less than the Tanimoto, e.g.,
Tversky measures. As yet, there is little to go on as to how
useful a paradigm this will be because there is less software and
fewer concrete results. Finally, the distance between molecular
shapes, or between any shapes defined as volumes or surfaces,
is a metric property in the mathematical sense of the word. As
yet, there has been little, if any, application of this observation.
We cannot know what new application to the design and
discovery of pharmaceuticals may yet arise from the simple
concept of molecular shape, but it is fair to say that the
progress so far is impressive.
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